Man-Induced Discrete Freshwater Discharge and Changes in Flow Structure and Bottom Turbulence in Altered Yeongsan Estuary, Korea
Flow measurements were performed in the altered Yeongsan estuary, Korea, in August 2011, to investigate changes in flow structure in the water column and turbulence characteristics very close to the bed. Comparison between the bottom turbulent kinetic energy (TKE) and suspended sediment concentratio...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-07, Vol.12 (7), p.1919 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flow measurements were performed in the altered Yeongsan estuary, Korea, in August 2011, to investigate changes in flow structure in the water column and turbulence characteristics very close to the bed. Comparison between the bottom turbulent kinetic energy (TKE) and suspended sediment concentration (SSC) was conducted to examine how discrete freshwater discharge affects the bottom sediment concentration. The discrete freshwater discharge due to the gate opening of the Yeongsan estuarine dam induced a strong two-layer circulation: an offshore-flowing surface layer and a landward-flowing bottom layer. The fine flow structure from the bed to 0.35 m above the bottom (mab hereafter) exhibited an upside-down-bell-shaped profile for which current speed was nearly uniform above 0.1 mab, with the magnitude of the horizontal and vertical flow speeds reaching 0.1 and 0.01 m/s, respectively. The bottom turbulence responded to the freshwater discharge at the surface layer and the maximum magnitude of the Reynolds stress reached up to 2 × 10−4 m2/s2 during the discharged period, which coincided with increased SSC in the bottom boundary layer. These results indicate that the surface freshwater discharge due to opening of the estuarine dam gate increases the SSC by the discharge-induced intensification of the turbulent flow in the bottom boundary layer. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12071919 |