Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis

In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no clos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2020-11, Vol.231 (11), p.4421-4444
Hauptverfasser: Kundu, Bidisha, Ganguli, Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4444
container_issue 11
container_start_page 4421
container_title Acta mechanica
container_volume 231
creator Kundu, Bidisha
Ganguli, Ranjan
description In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.
doi_str_mv 10.1007/s00707-020-02773-w
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A638342149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638342149</galeid><sourcerecordid>A638342149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</originalsourceid><addsrcrecordid>eNp9kM1qAyEQx6W00DTtC_TkC5iOuruuxxD6BYFemrMYV4NhV4tmSffta7M9l2FmmI_fwPwReqSwogDiKZcAggCD4kJwcr5CC9pQSRrJxTVaAAAltRRwi-5yPpaKiYou0G7Tx2w74mIacI79ePIxZBwdDjGQMfjLQH973fcT7qPubIf3Vg8Zj9mHA956i_M0DPaUJqyD7qfs8z26cbrP9uEvL9Hu5flz80a2H6_vm_WWGM7hRNqKslqwlnJh7J6ZtqFMGqgN3VfQMNcCdK2xupUATtZ1zahkTHLOWO064fgSrea7B91b5YOLp6RNsc4O3sRgnS_9dcNbXjFayQKwGTAp5pysU1_JDzpNioL6VVLNSqqipLooqc4F4jOUy3I42KSOcUzl1fwf9QPzmXaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><source>SpringerNature Journals</source><creator>Kundu, Bidisha ; Ganguli, Ranjan</creator><creatorcontrib>Kundu, Bidisha ; Ganguli, Ranjan</creatorcontrib><description>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02773-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2020-11, Vol.231 (11), p.4421-4444</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</citedby><cites>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</cites><orcidid>0000-0002-5315-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02773-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02773-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kundu, Bidisha</creatorcontrib><creatorcontrib>Ganguli, Ranjan</creatorcontrib><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qAyEQx6W00DTtC_TkC5iOuruuxxD6BYFemrMYV4NhV4tmSffta7M9l2FmmI_fwPwReqSwogDiKZcAggCD4kJwcr5CC9pQSRrJxTVaAAAltRRwi-5yPpaKiYou0G7Tx2w74mIacI79ePIxZBwdDjGQMfjLQH973fcT7qPubIf3Vg8Zj9mHA956i_M0DPaUJqyD7qfs8z26cbrP9uEvL9Hu5flz80a2H6_vm_WWGM7hRNqKslqwlnJh7J6ZtqFMGqgN3VfQMNcCdK2xupUATtZ1zahkTHLOWO064fgSrea7B91b5YOLp6RNsc4O3sRgnS_9dcNbXjFayQKwGTAp5pysU1_JDzpNioL6VVLNSqqipLooqc4F4jOUy3I42KSOcUzl1fwf9QPzmXaM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kundu, Bidisha</creator><creator>Ganguli, Ranjan</creator><general>Springer Vienna</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5315-2070</orcidid></search><sort><creationdate>20201101</creationdate><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><author>Kundu, Bidisha ; Ganguli, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Bidisha</creatorcontrib><creatorcontrib>Ganguli, Ranjan</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Bidisha</au><au>Ganguli, Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>231</volume><issue>11</issue><spage>4421</spage><epage>4444</epage><pages>4421-4444</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02773-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5315-2070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2020-11, Vol.231 (11), p.4421-4444
issn 0001-5970
1619-6937
language eng
recordid cdi_gale_infotracacademiconefile_A638342149
source SpringerNature Journals
subjects Classical and Continuum Physics
Control
Differential equations
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Original Paper
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20solutions%20of%20non-uniform%20axially%20loaded%20beams%20using%20Lie%20symmetry%20analysis&rft.jtitle=Acta%20mechanica&rft.au=Kundu,%20Bidisha&rft.date=2020-11-01&rft.volume=231&rft.issue=11&rft.spage=4421&rft.epage=4444&rft.pages=4421-4444&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02773-w&rft_dat=%3Cgale_cross%3EA638342149%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A638342149&rfr_iscdi=true