Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis
In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no clos...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2020-11, Vol.231 (11), p.4421-4444 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4444 |
---|---|
container_issue | 11 |
container_start_page | 4421 |
container_title | Acta mechanica |
container_volume | 231 |
creator | Kundu, Bidisha Ganguli, Ranjan |
description | In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams. |
doi_str_mv | 10.1007/s00707-020-02773-w |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A638342149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638342149</galeid><sourcerecordid>A638342149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</originalsourceid><addsrcrecordid>eNp9kM1qAyEQx6W00DTtC_TkC5iOuruuxxD6BYFemrMYV4NhV4tmSffta7M9l2FmmI_fwPwReqSwogDiKZcAggCD4kJwcr5CC9pQSRrJxTVaAAAltRRwi-5yPpaKiYou0G7Tx2w74mIacI79ePIxZBwdDjGQMfjLQH973fcT7qPubIf3Vg8Zj9mHA956i_M0DPaUJqyD7qfs8z26cbrP9uEvL9Hu5flz80a2H6_vm_WWGM7hRNqKslqwlnJh7J6ZtqFMGqgN3VfQMNcCdK2xupUATtZ1zahkTHLOWO064fgSrea7B91b5YOLp6RNsc4O3sRgnS_9dcNbXjFayQKwGTAp5pysU1_JDzpNioL6VVLNSqqipLooqc4F4jOUy3I42KSOcUzl1fwf9QPzmXaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><source>SpringerNature Journals</source><creator>Kundu, Bidisha ; Ganguli, Ranjan</creator><creatorcontrib>Kundu, Bidisha ; Ganguli, Ranjan</creatorcontrib><description>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02773-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2020-11, Vol.231 (11), p.4421-4444</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</citedby><cites>FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</cites><orcidid>0000-0002-5315-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02773-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02773-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kundu, Bidisha</creatorcontrib><creatorcontrib>Ganguli, Ranjan</creatorcontrib><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qAyEQx6W00DTtC_TkC5iOuruuxxD6BYFemrMYV4NhV4tmSffta7M9l2FmmI_fwPwReqSwogDiKZcAggCD4kJwcr5CC9pQSRrJxTVaAAAltRRwi-5yPpaKiYou0G7Tx2w74mIacI79ePIxZBwdDjGQMfjLQH973fcT7qPubIf3Vg8Zj9mHA956i_M0DPaUJqyD7qfs8z26cbrP9uEvL9Hu5flz80a2H6_vm_WWGM7hRNqKslqwlnJh7J6ZtqFMGqgN3VfQMNcCdK2xupUATtZ1zahkTHLOWO064fgSrea7B91b5YOLp6RNsc4O3sRgnS_9dcNbXjFayQKwGTAp5pysU1_JDzpNioL6VVLNSqqipLooqc4F4jOUy3I42KSOcUzl1fwf9QPzmXaM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kundu, Bidisha</creator><creator>Ganguli, Ranjan</creator><general>Springer Vienna</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5315-2070</orcidid></search><sort><creationdate>20201101</creationdate><title>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</title><author>Kundu, Bidisha ; Ganguli, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-84125728137ceb2c86129c05c1b4062f800d8cea8900f955521922933225fd7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Bidisha</creatorcontrib><creatorcontrib>Ganguli, Ranjan</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Bidisha</au><au>Ganguli, Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>231</volume><issue>11</issue><spage>4421</spage><epage>4444</epage><pages>4421-4444</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02773-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5315-2070</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2020-11, Vol.231 (11), p.4421-4444 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A638342149 |
source | SpringerNature Journals |
subjects | Classical and Continuum Physics Control Differential equations Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Original Paper Solid Mechanics Theoretical and Applied Mechanics Vibration |
title | Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20solutions%20of%20non-uniform%20axially%20loaded%20beams%20using%20Lie%20symmetry%20analysis&rft.jtitle=Acta%20mechanica&rft.au=Kundu,%20Bidisha&rft.date=2020-11-01&rft.volume=231&rft.issue=11&rft.spage=4421&rft.epage=4444&rft.pages=4421-4444&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02773-w&rft_dat=%3Cgale_cross%3EA638342149%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A638342149&rfr_iscdi=true |