Closed-form solutions of non-uniform axially loaded beams using Lie symmetry analysis

In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no clos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2020-11, Vol.231 (11), p.4421-4444
Hauptverfasser: Kundu, Bidisha, Ganguli, Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-020-02773-w