Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion

An ultrafine-grained (UFG) Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by high pressure torsion (HPT) technique and then aged at 120 and 170 °C for 2 h. The changes in the microstructure due to this artificial aging were studied by X-ray diffraction and transmission electron microscopy. It wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-12, Vol.55 (35), p.16791-16805
Hauptverfasser: Gubicza, Jenő, El-Tahawy, Moustafa, Lábár, János L., Bobruk, Elena V., Murashkin, Maxim Yu, Valiev, Ruslan Z., Chinh, Nguyen Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ultrafine-grained (UFG) Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by high pressure torsion (HPT) technique and then aged at 120 and 170 °C for 2 h. The changes in the microstructure due to this artificial aging were studied by X-ray diffraction and transmission electron microscopy. It was found that the HPT-processed alloy has a small grain size of about 200 nm and a high dislocation density of about 8 × 10 14  m −2 . The majority of precipitates after HPT are Guinier–Preston (GP) zones with a size of ~ 2 nm, and only a few large particles were formed at the grain boundaries. Annealing at 120 and 170 °C for 2 h resulted in the formation of stable MgZn 2 precipitates from a part of the GP zones. It was found that for the higher temperature the fraction of the MgZn 2 phase was larger and the dislocation density in the Al matrix was lower. The changes in the precipitates and the dislocation density due to aging were correlated to the hardness evolution. It was found that the majority of hardness reduction during aging was caused by the annihilation of dislocations and some grain growth at 170 °C. The aging effect on the microstructure and the hardness of the HPT-processed specimen was compared to that observed for the UFG sample processed by equal-channel angular pressing. It was revealed that in the HPT sample less secondary phase particles formed in the grain boundaries, and the higher amount of precipitates in the grain interiors resulted in a higher hardness even after aging.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-020-05264-4