A Chern–Weil formula for the Chern character of a perfect curved module
Let $k$ be a field of characteristic 0 and $\mathcal{A}$ a curved $k$-algebra. We obtain a Chern–Weil-type formula for the Chern character of a perfect $\mathcal{A}$-module taking values in $HN^{II}_0(\mathcal{A})$, the negative cyclic homology of the second kind associated to $\mathcal{A}$, when $\...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2020-01, Vol.14 (2), p.709-772 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $k$ be a field of characteristic 0 and $\mathcal{A}$ a curved $k$-algebra. We obtain a Chern–Weil-type formula for the Chern character of a perfect $\mathcal{A}$-module taking values in $HN^{II}_0(\mathcal{A})$, the negative cyclic homology of the second kind associated to $\mathcal{A}$, when $\mathcal{A}$ satisfies a certain smoothness condition. |
---|---|
ISSN: | 1661-6952 1661-6960 |
DOI: | 10.4171/JNCG/378 |