Descent of Hilbert $C$-modules
Let $F$ be a right Hilbert $C$*-module over a $C$*-algebra $B$, and suppose that $F$ is equipped with a left action, by compact operators, of a second $C$*-algebra $A$. Tensor product with $F$ gives a functor from Hilbert $C$*-modules over $A$ to Hilbert $C$*-modules over $B$. We prove that under ce...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2020-01, Vol.14 (2), p.487-529 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $F$ be a right Hilbert $C$*-module over a $C$*-algebra $B$, and suppose that $F$ is equipped with a left action, by compact operators, of a second $C$*-algebra $A$. Tensor product with $F$ gives a functor from Hilbert $C$*-modules over $A$ to Hilbert $C$*-modules over $B$. We prove that under certain conditions (which are always satisfied if, for instance, $A$ is nuclear), the image of this functor can be described in terms of coactions of a certain coalgebra canonically associated to $F$. We then discuss several examples that fit into this framework: parabolic induction of tempered group representations; Hermitian connections on Hilbert $C$*-modules; Fourier (co)algebras of compact groups; and the maximal $C$*-dilation of operator modules over non-self-adjoint operator algebras. |
---|---|
ISSN: | 1661-6952 1661-6960 |
DOI: | 10.4171/JNCG/371 |