Weighted cogrowth formula for free groups

We investigate the relationship between geometric, analytic and probabilistic indices for quotients of the Cayley graph of the free group ${\rm Cay}(F_n)$ by an arbitrary subgroup $G$ of $F_n$. Our main result, which generalizes Grigorchuk's cogrowth formula to variable edge lengths, provides a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2020-01, Vol.14 (2), p.349-368
Hauptverfasser: Jaerisch, Johannes, Matsuzaki, Katsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the relationship between geometric, analytic and probabilistic indices for quotients of the Cayley graph of the free group ${\rm Cay}(F_n)$ by an arbitrary subgroup $G$ of $F_n$. Our main result, which generalizes Grigorchuk's cogrowth formula to variable edge lengths, provides a formula relating the bottom of the spectrum of weighted Laplacian on $G \backslash {\rm Cay}(F_n)$ to the Poincaré exponent of $G$. Our main tool is the Patterson–Sullivan theory for Cayley graphs with variable edge lengths.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/547