Weighted cogrowth formula for free groups
We investigate the relationship between geometric, analytic and probabilistic indices for quotients of the Cayley graph of the free group ${\rm Cay}(F_n)$ by an arbitrary subgroup $G$ of $F_n$. Our main result, which generalizes Grigorchuk's cogrowth formula to variable edge lengths, provides a...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2020-01, Vol.14 (2), p.349-368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the relationship between geometric, analytic and probabilistic indices for quotients of the Cayley graph of the free group ${\rm Cay}(F_n)$ by an arbitrary subgroup $G$ of $F_n$. Our main result, which generalizes Grigorchuk's cogrowth formula to variable edge lengths, provides a formula relating the bottom of the spectrum of weighted Laplacian on $G \backslash {\rm Cay}(F_n)$ to the Poincaré exponent of $G$. Our main tool is the Patterson–Sullivan theory for Cayley graphs with variable edge lengths. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/547 |