Sustainability Assessment of Advanced Machining Technologies
Efficient cooling and lubrication techniques are required to obtain sustainable machining of difficult-to-cut materials, which are the pillars of aerospace, automotive, medical and nuclear industries. Cryogenic machining with the assistance of lubricated Liquid Carbon Dioxide (LCO2) is a novel appro...
Gespeichert in:
Veröffentlicht in: | Strojniski Vestnik - Journal of Mechanical Engineering 2019-01, Vol.65 (11-12), p.671-679 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient cooling and lubrication techniques are required to obtain sustainable machining of difficult-to-cut materials, which are the pillars of aerospace, automotive, medical and nuclear industries. Cryogenic machining with the assistance of lubricated Liquid Carbon Dioxide (LCO2) is a novel approach for sustainable manufacturing without the use of harmful water-based metalworking fluids (MWFs). In case of unavoidable use of MWFs under high pressure, such as turning finishing processes of difficult-to-cut materials, the pulsating high pressure delivery of MWFs prolongs the tool life and enables the control over chip length to prevent surface damage of high value-added parts. In this paper, sustainability assessment of both advanced principles was carried out, considering overall costs and operational safety. Experimental tests were executed on difficult-to-cut materials in comparison to conventional flood lubrication. For both techniques, longer tool life compared to flood lubrication was observed additional cleaner production and higher part quality led to reduced long-term overall costs. These advanced machining technologies are also operation safe, proving to be a sustainable alternative to conventional machining. |
---|---|
ISSN: | 0039-2480 |
DOI: | 10.5545/sv-jme.2019.6351 |