Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals

The failure in some direct synthesis of hierarchical zeolite with a hard- or soft-templating method would be caused by the brittle binding forces between the templates and zeolite precursors or frameworks. In present work, high-quality hierarchically porous ZSM-5 with crystalline pore walls is synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-08, Vol.55 (24), p.10412-10426
Hauptverfasser: Zhang, Lichen, Sun, Xiaobo, Pan, Meng, Yang, Xiaona, Liu, Yanchao, Sun, Jinghui, Wang, Quanhua, Zheng, Jiajun, Wang, Yan, Ma, Jinghong, Li, Wenlin, Li, Ruifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The failure in some direct synthesis of hierarchical zeolite with a hard- or soft-templating method would be caused by the brittle binding forces between the templates and zeolite precursors or frameworks. In present work, high-quality hierarchically porous ZSM-5 with crystalline pore walls is synthesized by using hydroxylated carbon nanotubes (CNTs) as templates. Mesopores structure with a size of about 10–35 nm similar to the diameters of the CNTs template is successfully fabricated in the as-synthesized ZSM-5 zeolite. The structural and textural properties of the as-synthesized samples are revealed by characterization of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, in situ infrared spectroscopy of pyridine, temperature-programmed desorption of ammonia (NH 3 -TPD), N 2 adsorption–desorption, and nuclear magnetic resonance spectroscopy in details. Catalytic cracking of tri-isopropylbenzene is chosen as a probe reaction so as to explore the catalytic performances of the hierarchical zeolite because of its notably increased external surfaces resulted from the created hierarchical pore system. A hierarchically cracking manner of bulky reactants is found over the as-synthesized the meso-zeolite ZSM-5.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-020-04708-1