Partial Regularity of Solutions of Nonlinear Superelliptic Systems with Subquadratic Growth
We prove global partial regularity of weak solutions $u$ of the Dirichlet problem for the nonlinear superelliptic system div $A(x,u,Du) + B(x,u,Du) = 0$, under natural subquadratic polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do n...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 2019-01, Vol.38 (2), p.191-208 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove global partial regularity of weak solutions $u$ of the Dirichlet problem for the nonlinear superelliptic system div $A(x,u,Du) + B(x,u,Du) = 0$, under natural subquadratic polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/1634 |