Holomorphic functions on the quantum polydisk and on the quantum ball
We introduce and study noncommutative (or „quantized") versions of the algebras of holomorphic functions on the polydisk and on the ball in $\mathbb C^n$. Specifically, for each $q\in\mathbb C\setminus\{ 0\}$ we construct Fréchet algebras $\mathcal O_q(\mathbb D^n)$ and $\mathcal O_q(\mathbb B^...
Gespeichert in:
Veröffentlicht in: | Journal of noncommutative geometry 2019-01, Vol.13 (3), p.857-886 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce and study noncommutative (or „quantized") versions of the algebras of holomorphic functions on the polydisk and on the ball in $\mathbb C^n$. Specifically, for each $q\in\mathbb C\setminus\{ 0\}$ we construct Fréchet algebras $\mathcal O_q(\mathbb D^n)$ and $\mathcal O_q(\mathbb B^n)$ such that for $q=1$ they are isomorphic to the algebras of holomorphic functions on the open polydisk $\mathbb D^n$ and on the open ball $\mathbb B^n$, respectively. In the case where $0 < q < 1$, we establish a relation between our holomorphic quantum ball algebra $\mathcal O_q(\mathbb B^n)$ and L.L. Vaksman's algebra $C_q(\bar{\mathbb B}^n)$ of continuous functions on the closed quantum ball. Finally, we show that $\mathcal O_q(\mathbb D^n)$ and $\mathcal O_q(\mathbb B^n)$ are not isomorphic provided that $|q|=1$ and $n\ge 2$. This result can be interpreted as a $q$-analog of Poincaré's theorem, which asserts that $\mathbb D^n$ and $\mathbb B^n$ are not biholomorphically equivalent unless $n=1$. |
---|---|
ISSN: | 1661-6952 1661-6960 |
DOI: | 10.4171/JNCG/340 |