On the rate of mixing of circle extensions of Anosov maps

Let $A: \mathbb T^2 \to \mathbb T^2$ be an Anosov diffeomorphism. Circle extensions $\widehat A$ are a rich family of non-uniformly hyperbolic diffeeomorphisms living on $\mathbb T^2 \times S^1$ for which the rate of mixing is conjectured to be generically exponential. In this paper, using transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2019-01, Vol.9 (3), p.791-824
1. Verfasser: Naud, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A: \mathbb T^2 \to \mathbb T^2$ be an Anosov diffeomorphism. Circle extensions $\widehat A$ are a rich family of non-uniformly hyperbolic diffeeomorphisms living on $\mathbb T^2 \times S^1$ for which the rate of mixing is conjectured to be generically exponential. In this paper, using transfer operators on Anisotropic Hilbert spaces, we investigate the possible rates of exponential mixing by exhibiting some explicit lower bounds on the decay rate by spectral techniques. The rates obtained are related to the topological pressure of two times the unstable jacobian.
ISSN:1664-039X
1664-0403
DOI:10.4171/JST/263