Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization
The ubiquitously transcribed tetratricopeptide repeat on X chromosome (UTX) is a major histone H3 lysine 27 (H3K27) demethylase and the mixed-lineage leukemia (MLL) proteins are the H3K4 methyltransferases. UTX is one of the major components of MLL3- and MLL4-containing (MlLL3/4) complexes and likel...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-04, Vol.39 (16), p.3322-3335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ubiquitously transcribed tetratricopeptide repeat on X chromosome (UTX) is a major histone H3 lysine 27 (H3K27) demethylase and the mixed-lineage leukemia (MLL) proteins are the H3K4 methyltransferases. UTX is one of the major components of MLL3- and MLL4-containing (MlLL3/4) complexes and likely has functions within the complexes. Although
UTX
is frequently mutated in various types of cancer and is thought to play a crucial role as a tumor suppressor, the importance of UTX interaction with MLL3/4 complexes in cancer formation is poorly understood. Here, we analyzed the ability of cancer-derived UTX mutant proteins to interact with ASH2L, which is a common core component of all the MLL complexes, and MLL3/4-specific components PTIP and PA1, and found that several single-amino acid substitution mutations in the tetratricopeptide repeat (TPR) affect UTX interaction with these components. Interaction-compromised mutants G137V and D336G and a TPR-deleted mutant Δ80-397 were preferentially localized to the cytoplasm, suggesting that UTX is retained in the nucleus by MLL3/4 complexes through their interaction with the TPR. Intriguingly, WT UTX suppressed colony formation in soft agar, whereas G137V failed. This suggests that interaction of UTX with MLL3/4 complex plays a crucial role in their tumor suppressor function. Preferential cytoplasmic localization was also observed for endogenous proteins of G137V and another mutant G137VΔ138 in HCT116 created by CRISPR-Cas9 gene editing. Interestingly, expression levels of these mutants were low and MG312 stabilized both endogenous as well as exogenous G137V proteins. These results reveal a novel mechanism of UTX regulation and reinforce the importance of UTX interaction with MLL3/4 complexes in cancer formation. |
---|---|
ISSN: | 0950-9232 1476-5594 1476-5594 |
DOI: | 10.1038/s41388-020-1218-3 |