Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017
In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem&quo...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-06, Vol.29 (2), p.289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni |
container_volume | 29 |
creator | Corvaja, Pietro Zannier, Umberto |
description | In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99 |
doi_str_mv | 10.4171/RLM/805 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A538120670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538120670</galeid><sourcerecordid>A538120670</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A5381206703</originalsourceid><addsrcrecordid>eNqVT91OgzAY7YUmTmd8he8BgLUwYLe4YNziYCHohcaYUj5czWhNW4x7Hl9UXPYC5rs4Jyc5Px8hN4wGc5ayWfWwmS1ofEYmjIXUT6KIXpBLaz8onadJGE_ITzH0DRqod6jNwfdLBW6HgN_SOlQCQXcg9Bca-8detoEdmoC9ArdWC8kdtuA0CDSOSwWfaPrBcSe1sh40B9iu8roqYVlWT9k6A65aeNzc5lVdwnNWFKu88sb4vh-UFMcwraAY646bGPUgpCydkvOO7y1en_CKBHd5vbz33_ke36TqtDNcjNdiL4VW2MlRz-JoMT6dpDT6t-EXhydjMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><source>European Mathematical Society Publishing House</source><creator>Corvaja, Pietro ; Zannier, Umberto</creator><creatorcontrib>Corvaja, Pietro ; Zannier, Umberto</creatorcontrib><description>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</description><identifier>ISSN: 1120-6330</identifier><identifier>DOI: 10.4171/RLM/805</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Permutations ; Riemann surfaces ; Set theory</subject><ispartof>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, 2018-06, Vol.29 (2), p.289</ispartof><rights>COPYRIGHT 2018 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Corvaja, Pietro</creatorcontrib><creatorcontrib>Zannier, Umberto</creatorcontrib><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><title>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</title><description>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</description><subject>Mathematical research</subject><subject>Permutations</subject><subject>Riemann surfaces</subject><subject>Set theory</subject><issn>1120-6330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVT91OgzAY7YUmTmd8he8BgLUwYLe4YNziYCHohcaYUj5czWhNW4x7Hl9UXPYC5rs4Jyc5Px8hN4wGc5ayWfWwmS1ofEYmjIXUT6KIXpBLaz8onadJGE_ITzH0DRqod6jNwfdLBW6HgN_SOlQCQXcg9Bca-8detoEdmoC9ArdWC8kdtuA0CDSOSwWfaPrBcSe1sh40B9iu8roqYVlWT9k6A65aeNzc5lVdwnNWFKu88sb4vh-UFMcwraAY646bGPUgpCydkvOO7y1en_CKBHd5vbz33_ke36TqtDNcjNdiL4VW2MlRz-JoMT6dpDT6t-EXhydjMQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Corvaja, Pietro</creator><creator>Zannier, Umberto</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>20180601</creationdate><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><author>Corvaja, Pietro ; Zannier, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A5381206703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical research</topic><topic>Permutations</topic><topic>Riemann surfaces</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corvaja, Pietro</creatorcontrib><creatorcontrib>Zannier, Umberto</creatorcontrib><jtitle>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corvaja, Pietro</au><au>Zannier, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</atitle><jtitle>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>289</spage><pages>289-</pages><issn>1120-6330</issn><abstract>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RLM/805</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1120-6330 |
ispartof | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, 2018-06, Vol.29 (2), p.289 |
issn | 1120-6330 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A538120670 |
source | European Mathematical Society Publishing House |
subjects | Mathematical research Permutations Riemann surfaces Set theory |
title | Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Number%20Theory--On%20the%20existence%20of%20covers%20of%20%5BP.sub.1%5D%20associated%20to%20certain%20permutations,%20by%20PIETRO%20CORVAJA%20and%20UMBERTO%20ZANNIER,%20communicated%20on%20November%2010,%202017&rft.jtitle=Atti%20della%20Accademia%20nazionale%20dei%20Lincei.%20Rendiconti%20Lincei.%20Matematica%20e%20applicazioni&rft.au=Corvaja,%20Pietro&rft.date=2018-06-01&rft.volume=29&rft.issue=2&rft.spage=289&rft.pages=289-&rft.issn=1120-6330&rft_id=info:doi/10.4171/RLM/805&rft_dat=%3Cgale%3EA538120670%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A538120670&rfr_iscdi=true |