Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017

In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem&quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-06, Vol.29 (2), p.289
Hauptverfasser: Corvaja, Pietro, Zannier, Umberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 289
container_title Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
container_volume 29
creator Corvaja, Pietro
Zannier, Umberto
description In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99
doi_str_mv 10.4171/RLM/805
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A538120670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538120670</galeid><sourcerecordid>A538120670</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A5381206703</originalsourceid><addsrcrecordid>eNqVT91OgzAY7YUmTmd8he8BgLUwYLe4YNziYCHohcaYUj5czWhNW4x7Hl9UXPYC5rs4Jyc5Px8hN4wGc5ayWfWwmS1ofEYmjIXUT6KIXpBLaz8onadJGE_ITzH0DRqod6jNwfdLBW6HgN_SOlQCQXcg9Bca-8detoEdmoC9ArdWC8kdtuA0CDSOSwWfaPrBcSe1sh40B9iu8roqYVlWT9k6A65aeNzc5lVdwnNWFKu88sb4vh-UFMcwraAY646bGPUgpCydkvOO7y1en_CKBHd5vbz33_ke36TqtDNcjNdiL4VW2MlRz-JoMT6dpDT6t-EXhydjMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><source>European Mathematical Society Publishing House</source><creator>Corvaja, Pietro ; Zannier, Umberto</creator><creatorcontrib>Corvaja, Pietro ; Zannier, Umberto</creatorcontrib><description>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</description><identifier>ISSN: 1120-6330</identifier><identifier>DOI: 10.4171/RLM/805</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Permutations ; Riemann surfaces ; Set theory</subject><ispartof>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, 2018-06, Vol.29 (2), p.289</ispartof><rights>COPYRIGHT 2018 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Corvaja, Pietro</creatorcontrib><creatorcontrib>Zannier, Umberto</creatorcontrib><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><title>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</title><description>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</description><subject>Mathematical research</subject><subject>Permutations</subject><subject>Riemann surfaces</subject><subject>Set theory</subject><issn>1120-6330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVT91OgzAY7YUmTmd8he8BgLUwYLe4YNziYCHohcaYUj5czWhNW4x7Hl9UXPYC5rs4Jyc5Px8hN4wGc5ayWfWwmS1ofEYmjIXUT6KIXpBLaz8onadJGE_ITzH0DRqod6jNwfdLBW6HgN_SOlQCQXcg9Bca-8detoEdmoC9ArdWC8kdtuA0CDSOSwWfaPrBcSe1sh40B9iu8roqYVlWT9k6A65aeNzc5lVdwnNWFKu88sb4vh-UFMcwraAY646bGPUgpCydkvOO7y1en_CKBHd5vbz33_ke36TqtDNcjNdiL4VW2MlRz-JoMT6dpDT6t-EXhydjMQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Corvaja, Pietro</creator><creator>Zannier, Umberto</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>20180601</creationdate><title>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</title><author>Corvaja, Pietro ; Zannier, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A5381206703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical research</topic><topic>Permutations</topic><topic>Riemann surfaces</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corvaja, Pietro</creatorcontrib><creatorcontrib>Zannier, Umberto</creatorcontrib><jtitle>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corvaja, Pietro</au><au>Zannier, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017</atitle><jtitle>Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>289</spage><pages>289-</pages><issn>1120-6330</issn><abstract>In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RLM/805</doi></addata></record>
fulltext fulltext
identifier ISSN: 1120-6330
ispartof Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, 2018-06, Vol.29 (2), p.289
issn 1120-6330
language eng
recordid cdi_gale_infotracacademiconefile_A538120670
source European Mathematical Society Publishing House
subjects Mathematical research
Permutations
Riemann surfaces
Set theory
title Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Number%20Theory--On%20the%20existence%20of%20covers%20of%20%5BP.sub.1%5D%20associated%20to%20certain%20permutations,%20by%20PIETRO%20CORVAJA%20and%20UMBERTO%20ZANNIER,%20communicated%20on%20November%2010,%202017&rft.jtitle=Atti%20della%20Accademia%20nazionale%20dei%20Lincei.%20Rendiconti%20Lincei.%20Matematica%20e%20applicazioni&rft.au=Corvaja,%20Pietro&rft.date=2018-06-01&rft.volume=29&rft.issue=2&rft.spage=289&rft.pages=289-&rft.issn=1120-6330&rft_id=info:doi/10.4171/RLM/805&rft_dat=%3Cgale%3EA538120670%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A538120670&rfr_iscdi=true