Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017

In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem&quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-06, Vol.29 (2), p.289
Hauptverfasser: Corvaja, Pietro, Zannier, Umberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99
ISSN:1120-6330
DOI:10.4171/RLM/805