Number Theory--On the existence of covers of [P.sub.1] associated to certain permutations, by PIETRO CORVAJA and UMBERTO ZANNIER, communicated on November 10, 2017
In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem&quo...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-06, Vol.29 (2), p.289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called "Hurwitz problem", asking for a "simple" description of the combinatorial data which can be so realized. KEY WORDS: Permutations, covers (of curves), branching MATHEMATICS SUBJECT CLASSIFICATION: 14H57, 05E99 |
---|---|
ISSN: | 1120-6330 |
DOI: | 10.4171/RLM/805 |