Functional Analysis--Compactness and s-numbers for polynomials
We extend the measure of non compactness notion to the polynomial setting by means of Approximation, Kolmogorov and Gelfand numbers, that are introduced for homogeneous polynomials. As an application, we study diagonal polynomials between sequence spaces. KEY WORDS: Homogeneous polynomials, s-number...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-03, Vol.29 (1), p.93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the measure of non compactness notion to the polynomial setting by means of Approximation, Kolmogorov and Gelfand numbers, that are introduced for homogeneous polynomials. As an application, we study diagonal polynomials between sequence spaces. KEY WORDS: Homogeneous polynomials, s-numbers sequences, approximation numbers, Kolmogorov numbers, the measure of non-compactness MATHEMATICS SUBJECT CLASSIFICATION: 47H60, 46B28, 46G25 |
---|---|
ISSN: | 1120-6330 |
DOI: | 10.4171/RLM/795 |