Functional Analysis--Compactness and s-numbers for polynomials

We extend the measure of non compactness notion to the polynomial setting by means of Approximation, Kolmogorov and Gelfand numbers, that are introduced for homogeneous polynomials. As an application, we study diagonal polynomials between sequence spaces. KEY WORDS: Homogeneous polynomials, s-number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2018-03, Vol.29 (1), p.93
Hauptverfasser: Caliskan, Erhan, Rueda, Pilar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the measure of non compactness notion to the polynomial setting by means of Approximation, Kolmogorov and Gelfand numbers, that are introduced for homogeneous polynomials. As an application, we study diagonal polynomials between sequence spaces. KEY WORDS: Homogeneous polynomials, s-numbers sequences, approximation numbers, Kolmogorov numbers, the measure of non-compactness MATHEMATICS SUBJECT CLASSIFICATION: 47H60, 46B28, 46G25
ISSN:1120-6330
DOI:10.4171/RLM/795