Achieving Ultra Low N[O.sub.x] Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - N[O.sub.x] Management Strategies

Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (N[O.sub.x]) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2017-10, Vol.10 (4)
Hauptverfasser: Sharp, Christopher, Webb, Cynthia C, Neely, Gary, Sarlashkar, Jayant V, Rengarajan, Sankar B, Yoon, Seungju, Henry, Cary, Zavala, Bryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (N[O.sub.x]) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in N[O.sub.x] emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr N[O.sub.x] emissions. This paper details engine and aftertreatment N[O.sub.x] management requirements and model based control considerations for achieving Ultra-Low N[O.sub.x] (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration. Further development is necessary for optimizing vocational test cycle emissions, but the results presented here demonstrate a potential pathway to achieving ultra-low N[O.sub.x] emissions on future heavy duty vehicles. CITATION: Sharp, C., Webb, C., Neely, G., Sarlashkar, J. et al., "Achieving Ultra Low N[O.sub.x] Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - NOx Management Strategies," SAE Int. J. Engines 10(4):2017, doi:10.4271/2017-01-0958.
ISSN:1946-3936
DOI:10.4271/2017-01-0958