Stability of Global Bounded Solutions to a Nonautonomous Nonlinear Second Order Integro-Differential Equation
We study the long-time behavior as time goes to infinity of global bounded weak solutions to the following integro-differential equation $$\ddot u+k*\dot u+\nabla E(u)=g, $$ in finite dimensions, where the nonlinear potential $E$ satisfies the Łojasiewicz inequality near some equilibrium point. Base...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 2018-01, Vol.37 (1), p.83-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the long-time behavior as time goes to infinity of global bounded weak solutions to the following integro-differential equation $$\ddot u+k*\dot u+\nabla E(u)=g, $$ in finite dimensions, where the nonlinear potential $E$ satisfies the Łojasiewicz inequality near some equilibrium point. Based on an appropriate new Lyapunov function and Łojasiewicz inequality we prove that any global bounded weak solution converges to a steady state. We also obtain the rate of convergence according to the Łojasiewicz exponent and the time-dependent right-hand side $g$. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/1604 |