Stability of Global Bounded Solutions to a Nonautonomous Nonlinear Second Order Integro-Differential Equation

We study the long-time behavior as time goes to infinity of global bounded weak solutions to the following integro-differential equation $$\ddot u+k*\dot u+\nabla E(u)=g, $$ in finite dimensions, where the nonlinear potential $E$ satisfies the Łojasiewicz inequality near some equilibrium point. Base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 2018-01, Vol.37 (1), p.83-99
1. Verfasser: Yassine, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the long-time behavior as time goes to infinity of global bounded weak solutions to the following integro-differential equation $$\ddot u+k*\dot u+\nabla E(u)=g, $$ in finite dimensions, where the nonlinear potential $E$ satisfies the Łojasiewicz inequality near some equilibrium point. Based on an appropriate new Lyapunov function and Łojasiewicz inequality we prove that any global bounded weak solution converges to a steady state. We also obtain the rate of convergence according to the Łojasiewicz exponent and the time-dependent right-hand side $g$.
ISSN:0232-2064
1661-4534
DOI:10.4171/ZAA/1604