Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization
The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expan...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2017-01, Vol.7 (3), p.733-770 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 3 |
container_start_page | 733 |
container_title | Journal of spectral theory |
container_volume | 7 |
creator | Molchanov, Stanislav Zheng, Lukun |
description | The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates). |
doi_str_mv | 10.4171/JST/176 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A511109532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511109532</galeid><sourcerecordid>A511109532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</originalsourceid><addsrcrecordid>eNo9kU1OwzAQhSMEElWpuIIlFqzSxnF-mmVV8atKLAISu8ieTFpXqR3ZLlBW3IE9x-AC3IST4LaAvLD95ntPGr0gOKXRMKE5Hd2W9yOaZwdBj2ZZEkZJxA7_3qx4PA4G1koRxSmN8yxhveBj2q6tQ0PwpePKSq2IbohbIDFodfuEypFGm51SwsJ8fdZSzT2vOzTc-Yl3KK1C_wXdcuenZG54t7DkWboF4V3XSvC6VpY4TUq50ur77b3sUIHPcZsOt-na4MoSrmrSauCtfN1ZToKjhrcWB793P3i4vLifXoezu6ub6WQWQlzELhRjIfKipgiZgGKMMctrIWjKWJ6NRVpDUlOIIRFcMJHzpKmBItJsnEMGEW9YPxjuc-e8xUqqRjvDwZ8aVxK0wkZ6fZJSSqMiZbE3nO8NYLS1BpuqM3LFzaaiUbWtolpaV_kqPHm2J_1-1VKvjfKL_FO-sB31A9yZjr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><source>European Mathematical Society Publishing House</source><creator>Molchanov, Stanislav ; Zheng, Lukun</creator><creatorcontrib>Molchanov, Stanislav ; Zheng, Lukun</creatorcontrib><description>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/JST/176</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Graph theory ; Mathematical research ; Polynomials ; Potential theory ; Power series ; Real functions ; Schrödinger equation</subject><ispartof>Journal of spectral theory, 2017-01, Vol.7 (3), p.733-770</ispartof><rights>European Mathematical Society</rights><rights>COPYRIGHT 2017 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Molchanov, Stanislav</creatorcontrib><creatorcontrib>Zheng, Lukun</creatorcontrib><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><title>Journal of spectral theory</title><addtitle>J. Spectr. Theory</addtitle><description>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</description><subject>Graph theory</subject><subject>Mathematical research</subject><subject>Polynomials</subject><subject>Potential theory</subject><subject>Power series</subject><subject>Real functions</subject><subject>Schrödinger equation</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kU1OwzAQhSMEElWpuIIlFqzSxnF-mmVV8atKLAISu8ieTFpXqR3ZLlBW3IE9x-AC3IST4LaAvLD95ntPGr0gOKXRMKE5Hd2W9yOaZwdBj2ZZEkZJxA7_3qx4PA4G1koRxSmN8yxhveBj2q6tQ0PwpePKSq2IbohbIDFodfuEypFGm51SwsJ8fdZSzT2vOzTc-Yl3KK1C_wXdcuenZG54t7DkWboF4V3XSvC6VpY4TUq50ur77b3sUIHPcZsOt-na4MoSrmrSauCtfN1ZToKjhrcWB793P3i4vLifXoezu6ub6WQWQlzELhRjIfKipgiZgGKMMctrIWjKWJ6NRVpDUlOIIRFcMJHzpKmBItJsnEMGEW9YPxjuc-e8xUqqRjvDwZ8aVxK0wkZ6fZJSSqMiZbE3nO8NYLS1BpuqM3LFzaaiUbWtolpaV_kqPHm2J_1-1VKvjfKL_FO-sB31A9yZjr4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Molchanov, Stanislav</creator><creator>Zheng, Lukun</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><author>Molchanov, Stanislav ; Zheng, Lukun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Graph theory</topic><topic>Mathematical research</topic><topic>Polynomials</topic><topic>Potential theory</topic><topic>Power series</topic><topic>Real functions</topic><topic>Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molchanov, Stanislav</creatorcontrib><creatorcontrib>Zheng, Lukun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molchanov, Stanislav</au><au>Zheng, Lukun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</atitle><jtitle>Journal of spectral theory</jtitle><addtitle>J. Spectr. Theory</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>3</issue><spage>733</spage><epage>770</epage><pages>733-770</pages><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JST/176</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-039X |
ispartof | Journal of spectral theory, 2017-01, Vol.7 (3), p.733-770 |
issn | 1664-039X 1664-0403 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A511109532 |
source | European Mathematical Society Publishing House |
subjects | Graph theory Mathematical research Polynomials Potential theory Power series Real functions Schrödinger equation |
title | Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20expansion%20of%20the%20resolvent%20for%20the%20Schr%C3%B6dinger%20operator%20on%20non-percolating%20graphs%20with%20applications%20to%20Simon%E2%80%93Spencer%20type%20theorems%20and%20localization&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Molchanov,%20Stanislav&rft.date=2017-01-01&rft.volume=7&rft.issue=3&rft.spage=733&rft.epage=770&rft.pages=733-770&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/JST/176&rft_dat=%3Cgale_cross%3EA511109532%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A511109532&rfr_iscdi=true |