Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization

The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2017-01, Vol.7 (3), p.733-770
Hauptverfasser: Molchanov, Stanislav, Zheng, Lukun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 3
container_start_page 733
container_title Journal of spectral theory
container_volume 7
creator Molchanov, Stanislav
Zheng, Lukun
description The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).
doi_str_mv 10.4171/JST/176
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A511109532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511109532</galeid><sourcerecordid>A511109532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</originalsourceid><addsrcrecordid>eNo9kU1OwzAQhSMEElWpuIIlFqzSxnF-mmVV8atKLAISu8ieTFpXqR3ZLlBW3IE9x-AC3IST4LaAvLD95ntPGr0gOKXRMKE5Hd2W9yOaZwdBj2ZZEkZJxA7_3qx4PA4G1koRxSmN8yxhveBj2q6tQ0PwpePKSq2IbohbIDFodfuEypFGm51SwsJ8fdZSzT2vOzTc-Yl3KK1C_wXdcuenZG54t7DkWboF4V3XSvC6VpY4TUq50ur77b3sUIHPcZsOt-na4MoSrmrSauCtfN1ZToKjhrcWB793P3i4vLifXoezu6ub6WQWQlzELhRjIfKipgiZgGKMMctrIWjKWJ6NRVpDUlOIIRFcMJHzpKmBItJsnEMGEW9YPxjuc-e8xUqqRjvDwZ8aVxK0wkZ6fZJSSqMiZbE3nO8NYLS1BpuqM3LFzaaiUbWtolpaV_kqPHm2J_1-1VKvjfKL_FO-sB31A9yZjr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><source>European Mathematical Society Publishing House</source><creator>Molchanov, Stanislav ; Zheng, Lukun</creator><creatorcontrib>Molchanov, Stanislav ; Zheng, Lukun</creatorcontrib><description>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/JST/176</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Graph theory ; Mathematical research ; Polynomials ; Potential theory ; Power series ; Real functions ; Schrödinger equation</subject><ispartof>Journal of spectral theory, 2017-01, Vol.7 (3), p.733-770</ispartof><rights>European Mathematical Society</rights><rights>COPYRIGHT 2017 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Molchanov, Stanislav</creatorcontrib><creatorcontrib>Zheng, Lukun</creatorcontrib><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><title>Journal of spectral theory</title><addtitle>J. Spectr. Theory</addtitle><description>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</description><subject>Graph theory</subject><subject>Mathematical research</subject><subject>Polynomials</subject><subject>Potential theory</subject><subject>Power series</subject><subject>Real functions</subject><subject>Schrödinger equation</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kU1OwzAQhSMEElWpuIIlFqzSxnF-mmVV8atKLAISu8ieTFpXqR3ZLlBW3IE9x-AC3IST4LaAvLD95ntPGr0gOKXRMKE5Hd2W9yOaZwdBj2ZZEkZJxA7_3qx4PA4G1koRxSmN8yxhveBj2q6tQ0PwpePKSq2IbohbIDFodfuEypFGm51SwsJ8fdZSzT2vOzTc-Yl3KK1C_wXdcuenZG54t7DkWboF4V3XSvC6VpY4TUq50ur77b3sUIHPcZsOt-na4MoSrmrSauCtfN1ZToKjhrcWB793P3i4vLifXoezu6ub6WQWQlzELhRjIfKipgiZgGKMMctrIWjKWJ6NRVpDUlOIIRFcMJHzpKmBItJsnEMGEW9YPxjuc-e8xUqqRjvDwZ8aVxK0wkZ6fZJSSqMiZbE3nO8NYLS1BpuqM3LFzaaiUbWtolpaV_kqPHm2J_1-1VKvjfKL_FO-sB31A9yZjr4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Molchanov, Stanislav</creator><creator>Zheng, Lukun</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</title><author>Molchanov, Stanislav ; Zheng, Lukun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b8bb79d1ec6bc98e237dbb1533768b5dc4d1c2c4bab3b7a4fdc1ee1687c6c0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Graph theory</topic><topic>Mathematical research</topic><topic>Polynomials</topic><topic>Potential theory</topic><topic>Power series</topic><topic>Real functions</topic><topic>Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molchanov, Stanislav</creatorcontrib><creatorcontrib>Zheng, Lukun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molchanov, Stanislav</au><au>Zheng, Lukun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization</atitle><jtitle>Journal of spectral theory</jtitle><addtitle>J. Spectr. Theory</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>7</volume><issue>3</issue><spage>733</spage><epage>770</epage><pages>733-770</pages><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JST/176</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1664-039X
ispartof Journal of spectral theory, 2017-01, Vol.7 (3), p.733-770
issn 1664-039X
1664-0403
language eng
recordid cdi_gale_infotracacademiconefile_A511109532
source European Mathematical Society Publishing House
subjects Graph theory
Mathematical research
Polynomials
Potential theory
Power series
Real functions
Schrödinger equation
title Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20expansion%20of%20the%20resolvent%20for%20the%20Schr%C3%B6dinger%20operator%20on%20non-percolating%20graphs%20with%20applications%20to%20Simon%E2%80%93Spencer%20type%20theorems%20and%20localization&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Molchanov,%20Stanislav&rft.date=2017-01-01&rft.volume=7&rft.issue=3&rft.spage=733&rft.epage=770&rft.pages=733-770&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/JST/176&rft_dat=%3Cgale_cross%3EA511109532%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A511109532&rfr_iscdi=true