Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization
The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expan...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2017-01, Vol.7 (3), p.733-770 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates). |
---|---|
ISSN: | 1664-039X 1664-0403 |
DOI: | 10.4171/JST/176 |