Cluster expansion of the resolvent for the Schrödinger operator on non-percolating graphs with applications to Simon–Spencer type theorems and localization

The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2017-01, Vol.7 (3), p.733-770
Hauptverfasser: Molchanov, Stanislav, Zheng, Lukun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper contains a generalization of the well-known 1D results on the absence of the a.c. spectrum ( in the spirit of the Simon–Spencer theorem) and localization to the wide class of “non-percolating” graphs, which include the Sierpiński lattice and quasi 1D trees. The main tools are cluster expansion of the resolvent and real analytic techniques (Kolmogorov’s lemma and similar estimates).
ISSN:1664-039X
1664-0403
DOI:10.4171/JST/176