Pointwise Limits of Sequences of Right-Continuous Functions and Measurability of Functions of Two Variables

In this article I prove that the pointwise limit $f\colon\mathbb R \to \mathbb R$ of a sequence of right-continuous functions has some special property (G) and that bounded functions of two variables $g\colon\mathbb R^2 \to \mathbb R$ whose vertical sections $g_x$, $x\in \mathbb R$, are derivatives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Analysis und ihre Anwendungen 2014, Vol.33 (2), p.171-176
1. Verfasser: Grande, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article I prove that the pointwise limit $f\colon\mathbb R \to \mathbb R$ of a sequence of right-continuous functions has some special property (G) and that bounded functions of two variables $g\colon\mathbb R^2 \to \mathbb R$ whose vertical sections $g_x$, $x\in \mathbb R$, are derivatives and horizontal sections $g^y$, $y\in \mathbb R$, are pointwise limits of sequences of right-continuous functions, are measurable and sup-measurable in the sense of Lebesgue.
ISSN:0232-2064
1661-4534
DOI:10.4171/ZAA/1505