Pointwise Limits of Sequences of Right-Continuous Functions and Measurability of Functions of Two Variables
In this article I prove that the pointwise limit $f\colon\mathbb R \to \mathbb R$ of a sequence of right-continuous functions has some special property (G) and that bounded functions of two variables $g\colon\mathbb R^2 \to \mathbb R$ whose vertical sections $g_x$, $x\in \mathbb R$, are derivatives...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 2014, Vol.33 (2), p.171-176 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article I prove that the pointwise limit $f\colon\mathbb R \to \mathbb R$ of a sequence of right-continuous functions has some special property (G) and that bounded functions of two variables $g\colon\mathbb R^2 \to \mathbb R$ whose vertical sections $g_x$, $x\in \mathbb R$, are derivatives and horizontal sections $g^y$, $y\in \mathbb R$, are pointwise limits of sequences of right-continuous functions, are measurable and sup-measurable in the sense of Lebesgue. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/1505 |