The geometry of right-angled Artin subgroups of mapping class groups
We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasi-isometric embedding for both of the stan...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2012-01, Vol.6 (2), p.249-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasi-isometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus $h$ surfaces (for any $h$ at least 2) in the moduli space of genus $g$ surfaces (for any $g$ at least 3) for which the universal covers are quasi-isometrically embedded in the Teichmüller space. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/157 |