The geometry of right-angled Artin subgroups of mapping class groups

We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasi-isometric embedding for both of the stan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2012-01, Vol.6 (2), p.249-278
Hauptverfasser: Clay, Matt, Leininger, Christopher, Mangahas, Johanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasi-isometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus $h$ surfaces (for any $h$ at least 2) in the moduli space of genus $g$ surfaces (for any $g$ at least 3) for which the universal covers are quasi-isometrically embedded in the Teichmüller space.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/157