Pseudo-Anosov subgroups of fibered 3-manifold groups

Let $S$ be a hyperbolic surface and let $\mathring{S}$ be the surface obtained from $S$ by removing a point. The mapping class groups $\mathrm {Mod}(S)$ and $\mathrm {Mod}(\mathring{S})$ fit into a short exact sequence \[ 1 \to \pi_1(S) \to \mathrm {Mod}(\mathring{S}) \to \mathrm {Mod}(S) \to 1. \]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2014-01, Vol.8 (4), p.1247-1282
Hauptverfasser: Dowdall, Spencer, Kent IV, Richard, Leininger, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $S$ be a hyperbolic surface and let $\mathring{S}$ be the surface obtained from $S$ by removing a point. The mapping class groups $\mathrm {Mod}(S)$ and $\mathrm {Mod}(\mathring{S})$ fit into a short exact sequence \[ 1 \to \pi_1(S) \to \mathrm {Mod}(\mathring{S}) \to \mathrm {Mod}(S) \to 1. \] If $M$ is a hyperbolic $3$-manifold that fibers over the circle with fiber $S$, then its fundamental group fits into a short exact sequence \[ 1 \to \pi_1(S) \to \pi_1(M) \to \mathbb Z \to 1 \] that injects into the one above. We show that, when viewed as subgroups of $\mathrm {Mod} (\mathring{S})$, finitely generated purely pseudo-Anosov subgroups of $\pi_1(M)$ are convex cocompact in the sense of Farb and Mosher. More generally, if we have a $\delta$-hyperbolic surface group extension \[ 1 \to \pi_1(S) \to \Gamma_\Theta \to \Theta \to 1, \] any quasiisometrically embedded purely pseudo-Anosov subgroup of $\Gamma_\Theta$ is convex cocompact in $\mathrm {Mod}(\mathring{S})$. We also obtain a generalization of a theorem of Scott and Swarup by showing that finitely generated subgroups of $\pi_1(S)$ are quasiisometrically embedded in hyperbolic extensions $\Gamma_\Theta$.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/302