On the product decomposition conjecture for finite simple groups

We prove that if $G$ is a finite simple group of Lie type and $S$ is a subset of $G$ of size at least two, then $G$ is a product of at most $c\log|G|/\log|S|$ conjugates of $S$, where $c$ depends only on the Lie rank of $G$. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2013-01, Vol.7 (4), p.867-882
Hauptverfasser: Gill, Nick, Pyber, László, Short, Ian, Szabó, Endre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if $G$ is a finite simple group of Lie type and $S$ is a subset of $G$ of size at least two, then $G$ is a product of at most $c\log|G|/\log|S|$ conjugates of $S$, where $c$ depends only on the Lie rank of $G$. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of families of simple groups of bounded rank. We also obtain various related results about products of conjugates of a set within a group.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/208