On the product decomposition conjecture for finite simple groups
We prove that if $G$ is a finite simple group of Lie type and $S$ is a subset of $G$ of size at least two, then $G$ is a product of at most $c\log|G|/\log|S|$ conjugates of $S$, where $c$ depends only on the Lie rank of $G$. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of fa...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2013-01, Vol.7 (4), p.867-882 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if $G$ is a finite simple group of Lie type and $S$ is a subset of $G$ of size at least two, then $G$ is a product of at most $c\log|G|/\log|S|$ conjugates of $S$, where $c$ depends only on the Lie rank of $G$. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of families of simple groups of bounded rank. We also obtain various related results about products of conjugates of a set within a group. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/208 |