Cohomological invariants and the classifying space for proper actions

We investigate two open questions in a cohomology theory relative to the family of finite subgroups. The problem of whether the $\mathbb{F}$-cohomological dimension is subadditive is reduced to extensions by groups of prime order. We show that every finitely generated regular branch group has infini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2012-01, Vol.6 (4), p.659-675
1. Verfasser: Gandini, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate two open questions in a cohomology theory relative to the family of finite subgroups. The problem of whether the $\mathbb{F}$-cohomological dimension is subadditive is reduced to extensions by groups of prime order. We show that every finitely generated regular branch group has infinite rational cohomological dimension. Moreover, we prove that the first Grigorchuk group $\mathfrak{G}$ is not contained in Kropholler’s class ${\scriptstyle{\rm H}}\mathfrak F$.
ISSN:1661-7207
1661-7215
DOI:10.4171/GGD/169