An Eilenberg–Ganea phenomenon for actions with virtually cyclic stabilisers
In dimension 3 and above, Bredon cohomology gives an accurate purely algebraic description of the minimal dimension of the classifying space for actions of a group with stabilisers in any given family of subgroups. For some Coxeter groups and the family of virtually cyclic subgroups we show that the...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2014-01, Vol.8 (1), p.135-142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In dimension 3 and above, Bredon cohomology gives an accurate purely algebraic description of the minimal dimension of the classifying space for actions of a group with stabilisers in any given family of subgroups. For some Coxeter groups and the family of virtually cyclic subgroups we show that the Bredon cohomological dimension is 2 while the Bredon geometric dimension is 3. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/219 |