Full groups of Cuntz–Krieger algebras and Higman–Thompson groups
In this paper, we will study representations of the continuous full group $\Gamma_A$ of a one-sided topological Markov shift $(X_A,\sigma_A)$ for an irreducible matrix $A$ with entries in $\{0,1\}$ as a generalization of Higman–Thompson groups $V_N, 1 < N \in {\mathbb{N}}$. We will show that the...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2017-01, Vol.11 (2), p.499-531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will study representations of the continuous full group $\Gamma_A$ of a one-sided topological Markov shift $(X_A,\sigma_A)$ for an irreducible matrix $A$ with entries in $\{0,1\}$ as a generalization of Higman–Thompson groups $V_N, 1 < N \in {\mathbb{N}}$. We will show that the group $\Gamma_A$ can be represented as a group $\Gamma_A^{\operatorname{tab}}$ of matrices, called $A$-adic tables, with entries in admissible words of the shift space $X_A$, and a group $\Gamma_A^{\operatorname{PL}}$ of right continuous piecewise linear functions, called $A$-adic PL functions, on $[0,1]$ with finite singularities. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/405 |