Partial differential equations--a Harnack's inequality and holder continuity for solutions of mixed type evolution equations
We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is [mu](x) [partial derivative]u / [partial derivative]t - [DELTA]u = 0 where [mu] can be positive, null and negative, so that elliptic-parabolic and forward-ba...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni 2015-12, Vol.26 (4), p.385 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is [mu](x) [partial derivative]u / [partial derivative]t - [DELTA]u = 0 where [mu] can be positive, null and negative, so that elliptic-parabolic and forward-backward parabolic equations are included. For functions belonging to this class we prove local bounded-ness and show a Harnack inequality which, as by-products, gives Holder-continuity, in particular in the interface I where [mu] change sign, and a maximum principle. Key words: Mixed type equations, Harnack's inequality, Holder-continuity MATHEMATICS SUBJECT CLASSIFICATION: 35M10, 35B65 |
---|---|
ISSN: | 1120-6330 |
DOI: | 10.4171/RLM/711 |