Spectral homogeneity of limit-periodic Schrödinger operators

We prove that the spectrum of a limit-periodic Schrödinger operator is homogeneous in the sense of Carleson whenever the potential obeys the Pastur–Tkachenko condition. This implies that a dense set of limit-periodic Schrödinger operators have purely absolutely continuous spectrum supported on a hom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2017-01, Vol.7 (2), p.387-406
Hauptverfasser: Fillman, Jake, Lukic, Milivoje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the spectrum of a limit-periodic Schrödinger operator is homogeneous in the sense of Carleson whenever the potential obeys the Pastur–Tkachenko condition. This implies that a dense set of limit-periodic Schrödinger operators have purely absolutely continuous spectrum supported on a homogeneous Cantor set. When combined with work of Gesztesy–Yuditskii, this also implies that the spectrum of a Pastur–Tkachenko potential has infinite gap length whenever the potential fails to be uniformly almost periodic.
ISSN:1664-039X
1664-0403
DOI:10.4171/JST/166