Spectral homogeneity of limit-periodic Schrödinger operators
We prove that the spectrum of a limit-periodic Schrödinger operator is homogeneous in the sense of Carleson whenever the potential obeys the Pastur–Tkachenko condition. This implies that a dense set of limit-periodic Schrödinger operators have purely absolutely continuous spectrum supported on a hom...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2017-01, Vol.7 (2), p.387-406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the spectrum of a limit-periodic Schrödinger operator is homogeneous in the sense of Carleson whenever the potential obeys the Pastur–Tkachenko condition. This implies that a dense set of limit-periodic Schrödinger operators have purely absolutely continuous spectrum supported on a homogeneous Cantor set. When combined with work of Gesztesy–Yuditskii, this also implies that the spectrum of a Pastur–Tkachenko potential has infinite gap length whenever the potential fails to be uniformly almost periodic. |
---|---|
ISSN: | 1664-039X 1664-0403 |
DOI: | 10.4171/JST/166 |