Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential

The possibility of attaining an superhard state in multilayer vacuum-arc ZrN/CrN coatings with a layer thickness of about 20 nm has been established. It has been shown that the application of a constant negative potential for structural engineering during deposition leads to the formation of solid s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics 2016-07, Vol.61 (7), p.1060-1063
Hauptverfasser: Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The possibility of attaining an superhard state in multilayer vacuum-arc ZrN/CrN coatings with a layer thickness of about 20 nm has been established. It has been shown that the application of a constant negative potential for structural engineering during deposition leads to the formation of solid solutions due to mixing of interfaces. The hardness of these systems exceeds 30 GPa. The application of a pulsed high-voltage bias potential at which the ordering of atoms stimulated by elevated mobility is observed makes it possible to suppress the mixing of the interfaces and to attain elevated hardness (up to 42 GPa) for nanometer layer thicknesses.
ISSN:1063-7842
1090-6525
DOI:10.1134/S1063784216070252