Principles of the Development and Introduction of an Automated Process Control System for Blast-Furnace Smelting at the Magnitogorsk Metallurgical Combine
The principles of construction and the architecture of an automated system for controlling blast-furnace smelting are examined. A block diagram of a hardware-software complex developed for a blast furnace is presented along with scheme for integrating the furnace control system into the corporate co...
Gespeichert in:
Veröffentlicht in: | Metallurgist (New York) 2015-11, Vol.59 (7-8), p.653-658 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The principles of construction and the architecture of an automated system for controlling blast-furnace smelting are examined. A block diagram of a hardware-software complex developed for a blast furnace is presented along with scheme for integrating the furnace control system into the corporate control system at the factory. The system that has been developed creates a single informational-technological and control space that is closely linked to other information systems at the factory – especially the systems of the subdivisions whose performance has the greatest impact on the quality of the pig iron: the shop that prepares the sintering-machine charges, the sinter shop, the coke and coal chemicals plant, the BOF shop, the rail transport facility, the oxygen-plant/compressor station, and others. The main functional capabilities of the software are realized in the form of a model system that supports decision-making. This system is based on a group of mathematical models that solve various problems related to blast-furnace smelting. Users of the system can obtain missing information which is needed to make a decision by engaging in a dialog with the mathematical model. The results that have been obtained from using the informational-modeling system have improved response time and performance in the analysis, prediction, and planning of production situations, which in turn has improved decision-making by engineers and technicians when there are fluctuations in the composition and quality of the iron-ore-bearing materials being smelted in the furnaces and changes in the market conditions. |
---|---|
ISSN: | 0026-0894 1573-8892 |
DOI: | 10.1007/s11015-015-0154-x |