The Crystalline Dynamics of Spiral-Shaped Curves
We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach’s Contraction Mapping Theorem and the Bellma...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2015-07, Vol.160 (2), p.409-416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach’s Contraction Mapping Theorem and the Bellman–Gronwall inequality are the main tools applied in our proof. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-015-1254-5 |