Matrix Optimization Under Random External Fields
We consider the quadratic optimization problem F n W , h : = sup x ∈ S n - 1 1 2 x T W x + h T x , with W a (random) matrix and h a random external field. We study the probabilities of large deviation of F n W , h for h a centered Gaussian vector with i.i.d. entries, both conditioned on W (a general...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2015-06, Vol.159 (6), p.1306-1326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the quadratic optimization problem
F
n
W
,
h
:
=
sup
x
∈
S
n
-
1
1
2
x
T
W
x
+
h
T
x
,
with
W
a (random) matrix and
h
a random external field. We study the probabilities of large deviation of
F
n
W
,
h
for
h
a centered Gaussian vector with i.i.d. entries, both conditioned on
W
(a general Wigner matrix), and unconditioned when
W
is a
GOE
matrix. Our results validate (in a certain region) and correct (in another region), the prediction obtained by the mathematically non-rigorous replica method in Fyodorov and Doussal (J Stat Phys 154:466–490,
2014
). |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-015-1228-7 |