Matrix Optimization Under Random External Fields

We consider the quadratic optimization problem F n W , h : = sup x ∈ S n - 1 1 2 x T W x + h T x , with W a (random) matrix and h a random external field. We study the probabilities of large deviation of F n W , h for h a centered Gaussian vector with i.i.d. entries, both conditioned on W (a general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2015-06, Vol.159 (6), p.1306-1326
Hauptverfasser: Dembo, Amir, Zeitouni, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the quadratic optimization problem F n W , h : = sup x ∈ S n - 1 1 2 x T W x + h T x , with W a (random) matrix and h a random external field. We study the probabilities of large deviation of F n W , h for h a centered Gaussian vector with i.i.d. entries, both conditioned on W (a general Wigner matrix), and unconditioned when W is a GOE matrix. Our results validate (in a certain region) and correct (in another region), the prediction obtained by the mathematically non-rigorous replica method in Fyodorov and Doussal (J Stat Phys 154:466–490, 2014 ).
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-015-1228-7