Smoothing of the Singularities of Functions Whose Integrals over the Balls on a Sphere are Zero
We study functions defined on a sphere with prickled point whose integrals over all admissible “hemispheres” are equal to zero. A condition is established under which the point is a removable set for this class of functions. It is shown that this condition cannot be omitted or noticeably weakened....
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2015-07, Vol.67 (2), p.314-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study functions defined on a sphere with prickled point whose integrals over all admissible “hemispheres” are equal to zero. A condition is established under which the point is a removable set for this class of functions. It is shown that this condition cannot be omitted or noticeably weakened. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-015-1081-5 |