Smoothing of the Singularities of Functions Whose Integrals over the Balls on a Sphere are Zero

We study functions defined on a sphere with prickled point whose integrals over all admissible “hemispheres” are equal to zero. A condition is established under which the point is a removable set for this class of functions. It is shown that this condition cannot be omitted or noticeably weakened....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2015-07, Vol.67 (2), p.314-322
Hauptverfasser: Volchkov, Vit. V., Savost’yanova, I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study functions defined on a sphere with prickled point whose integrals over all admissible “hemispheres” are equal to zero. A condition is established under which the point is a removable set for this class of functions. It is shown that this condition cannot be omitted or noticeably weakened.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-015-1081-5