Aspects of Floquet bands and topological phase transitions in a continuously driven superlattice

The recent creation of novel topological states of matter via periodic driving fields has attracted much attention. To contribute to the growing knowledge on this subject, we study the well-known Harper-Aubry-André model modified by a continuous time-periodic modulation and report on its topological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2014-09, Vol.87 (9), Article 204
Hauptverfasser: Zhou, Longwen, Wang, Hailong, Ho, Derek Y.H., Gong, Jiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent creation of novel topological states of matter via periodic driving fields has attracted much attention. To contribute to the growing knowledge on this subject, we study the well-known Harper-Aubry-André model modified by a continuous time-periodic modulation and report on its topological properties along with several other interesting features. The Floquet bands are found to have non-zero Chern numbers which are generally different from those in the original static model. Topological phase transitions (discontinuous change of Chern numbers) take place as we tune the amplitude or period of the driving field. We demonstrate that the non-trivial Floquet band topology manifests via the quantized transport of Wannier states in the lattice space. For certain parameter choices, very flat yet topologically non-trivial Floquet bands emerge, a feature potentially useful for simulating the physics of strongly correlated systems. In some cases with an even number of Floquet bands, the spectrum features linearly dispersing Dirac cones which hold potential for the simulation of high energy physics or Klein tunnelling. Taking open boundary conditions, we observe anomalous counter-propagating chiral edge modes and degenerate zero modes. We end by discussing how these theoretical predictions may be verified experimentally.
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2014-50465-9