Iodine adsorption on silver-exchanged titania-derived adsorbents
I-129 is a hazardous fission product due to its long half life and ability to bioaccumulate. Silver mordenite has been studied for the removal of I-129 because of its hydrothermal stability arising from a high Si/Al ratio which subsequently limits its silver loading and iodine capacity. Titanosilica...
Gespeichert in:
Veröffentlicht in: | Journal of radioanalytical and nuclear chemistry 2014-10, Vol.302 (1), p.527-532 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I-129 is a hazardous fission product due to its long half life and ability to bioaccumulate. Silver mordenite has been studied for the removal of I-129 because of its hydrothermal stability arising from a high Si/Al ratio which subsequently limits its silver loading and iodine capacity. Titanosilicate ETS-10 and the sodium nanotitanate ETS-2 were exchanged to over 35 wt % silver and exposed to saturated iodine vapour at 80 °C under dry and humid conditions. The results indicate that the silver on these materials is reactive toward iodine and that the majority of the silver ions are utilized. |
---|---|
ISSN: | 0236-5731 1588-2780 |
DOI: | 10.1007/s10967-014-3252-5 |