On the generalized convolution for [F.sub.c], [F.sub.s], and K-L integral transforms
We study new generalized convolutions [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] with weight function [gamma](y) = y for the Fourier cosine, Fourier sine, and Kontorovich-Lebedev integral transforms in weighted function spaces with two parameters L([R.sub.+], [x.sup.[alpha]][e.sup.-[beta]x]...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2012-06, Vol.64 (1), p.89 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study new generalized convolutions [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] with weight function [gamma](y) = y for the Fourier cosine, Fourier sine, and Kontorovich-Lebedev integral transforms in weighted function spaces with two parameters L([R.sub.+], [x.sup.[alpha]][e.sup.-[beta]x]dx). These generalized convolutions satisfy the factorization equalities [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. We establish a relationship between these generalized convolutions and known convolutions, and also relations that associate them with other convolution operators. As an example, we use these new generalized convolutions for the solution of a class of integral equations with Toeplitz- plus-Hankel kernels and a class of systems of two integral equations with Toeplitz-plus-Hankel kernels. |
---|---|
ISSN: | 0041-5995 |