Fission yields of molybdenum in the Oklo natural reactor

The isotopic compositions of molybdenum in six uranium-rich samples from the Oklo Zone 9 natural reactor were accurately measured by thermal ionization mass spectrometry. The samples were subjected to an ion exchange separation process that removed the isobaric elements zirconium and ruthenium, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radioanalytical and nuclear chemistry 2012-09, Vol.293 (3), p.949-954
Hauptverfasser: Wieser, M. E., Barry, S., De Laeter, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isotopic compositions of molybdenum in six uranium-rich samples from the Oklo Zone 9 natural reactor were accurately measured by thermal ionization mass spectrometry. The samples were subjected to an ion exchange separation process that removed the isobaric elements zirconium and ruthenium, with high efficiency and a low blank. Molybdenum possesses seven isotopes of which 92,94,96 Mo are unaffected by the fission process, enabling the raw data to be corrected for isotope fractionation by normalising to 92 Mo/ 96 Mo, and to use 94 Mo to correct for the primordial component in each of the fission-produced isotopes. This enables the relative fission yields of Mo to be calculated from the isotopic composition measurements, to give cumulative fission yields of 1:0.941:0.936:1.025 for 95,97,98,100 Mo, respectively. These data demonstrate that the most important nuclear process involved in reactor Zone 9 was the thermal neutron fission of 235 U. The consistency of the relative cumulative fission yields of all six samples from different locations in the reactor, implies that Mo is a mobile element in the uraninite comprising Zone 9, and that a significant fraction of molybdenum was mobilized within the reactor zone and probably escaped from Zone 9, a conclusion in agreement with earlier published work.
ISSN:0236-5731
1588-2780
DOI:10.1007/s10967-012-1802-2