An Averaging Theorem for FPU in the Thermodynamic Limit
Consider an FPU chain composed of N ≫ 1 particles, and endow the phase space with the Gibbs measure corresponding to a small temperature β - 1 . Given a fixed K , we construct K packets of normal modes whose energies are adiabatic invariants (i.e., are approximately constant for times of order β 1 -...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2014-04, Vol.155 (2), p.300-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider an FPU chain composed of
N
≫
1
particles, and endow the phase space with the Gibbs measure corresponding to a small temperature
β
-
1
. Given a fixed
K
, we construct
K
packets of normal modes whose energies are adiabatic invariants (i.e., are approximately constant for times of order
β
1
-
a
,
a
>
0
) for initial data in a set of large measure. Furthermore, the time autocorrelation function of the energy of each packet does not decay significantly for times of order
β
. The restrictions on the shape of the packets are very mild. All estimates are uniform in the number
N
of particles and thus hold in the thermodynamic limit
N
→
∞
,
β
>
0
. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-014-0958-2 |