Thin Subsets of Groups
For a group G and a natural number m; a subset A of G is called m-thin if, for each finite subset F of G ; there exists a finite subset K of G such that | F g ∩ A | ≤ m for all g ∈ G \ K : We show that each m -thin subset of an Abelian group G of cardinality ℵ n ; n = 0, 1,… can be split into ≤ m...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2014-02, Vol.65 (9), p.1384-1393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a group
G
and a natural number m; a subset
A
of
G
is called m-thin if, for each finite subset
F
of
G
; there exists a finite subset
K
of
G
such that |
F
g
∩
A
| ≤
m
for all
g
∈
G
\
K
: We show that each
m
-thin subset of an Abelian group
G
of cardinality ℵ
n
;
n
= 0, 1,… can be split into ≤
m
n
+1
1-thin subsets. On the other hand, we construct a group G of cardinality ℵ
ω
and select a 2-thin subset of
G
which cannot be split into finitely many 1-thin subsets. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-014-0866-2 |