Thin Subsets of Groups

For a group G and a natural number m; a subset A of G is called m-thin if, for each finite subset F of G ; there exists a finite subset K of G such that | F g ∩ A | ≤  m for all g ∈ G \ K : We show that each m -thin subset of an Abelian group G of cardinality ℵ n ; n  = 0, 1,… can be split into ≤  m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2014-02, Vol.65 (9), p.1384-1393
Hauptverfasser: Protasov, I. V., Slobodyanyuk, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a group G and a natural number m; a subset A of G is called m-thin if, for each finite subset F of G ; there exists a finite subset K of G such that | F g ∩ A | ≤  m for all g ∈ G \ K : We show that each m -thin subset of an Abelian group G of cardinality ℵ n ; n  = 0, 1,… can be split into ≤  m n +1 1-thin subsets. On the other hand, we construct a group G of cardinality ℵ ω and select a 2-thin subset of G which cannot be split into finitely many 1-thin subsets.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-014-0866-2