About Thinning Invariant Partition Structures
Bernoulli- p thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences ( X 1 , X 2 ,…); (2) gaps of such sequences ( X n +1 − X 1 ) n ∈ℕ ; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant und...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2012-08, Vol.148 (2), p.325-344 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bernoulli-
p
thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences (
X
1
,
X
2
,…); (2) gaps of such sequences (
X
n
+1
−
X
1
)
n
∈ℕ
; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant under Bernoulli-
p
thinning for all
p
∈(0,1]. Based on this, we make conjectures for the latter two cases, and provide a potential approach for proof. We explain the relation to spin glasses, which is complementary to important previous work of Aizenman and Ruzmaikina, Arguin, and Shkolnikov. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-012-0544-4 |