About Thinning Invariant Partition Structures

Bernoulli- p thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences ( X 1 , X 2 ,…); (2) gaps of such sequences ( X n +1 − X 1 ) n ∈ℕ ; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2012-08, Vol.148 (2), p.325-344
Hauptverfasser: Starr, Shannon, Vermesi, Brigitta, Wei, Ang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bernoulli- p thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences ( X 1 , X 2 ,…); (2) gaps of such sequences ( X n +1 − X 1 ) n ∈ℕ ; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant under Bernoulli- p thinning for all p ∈(0,1]. Based on this, we make conjectures for the latter two cases, and provide a potential approach for proof. We explain the relation to spin glasses, which is complementary to important previous work of Aizenman and Ruzmaikina, Arguin, and Shkolnikov.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-012-0544-4