Photoconductivity of two-phase hydrogenated silicon films

Electrical, photoelectric, and optical properties of hydrogenated amorphous silicon films with various ratios between the nanocrystalline and amorphous phases in the structure of the material have been studied. On passing from an amorphous to a nanocrystalline structure, the room-temperature conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2010-04, Vol.44 (4), p.494-497
Hauptverfasser: Kazanskii, A. G., Terukov, E. I., Forsh, P. A., Kleider, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical, photoelectric, and optical properties of hydrogenated amorphous silicon films with various ratios between the nanocrystalline and amorphous phases in the structure of the material have been studied. On passing from an amorphous to a nanocrystalline structure, the room-temperature conductivity of the films increases by more than five orders of magnitude. With increasing fraction of the nanocrystalline component in the film structure, the steady-state photoconductivity varies nonmonotonically and is determined by the variation in the carrier mobility and lifetime. Introduction of a small fraction of nanocrystals into the amorphous matrix leads to a decrease in the absorption in the defect-related part of the spectrum and, accordingly, to a lower concentration of dangling bonds, which are the main recombination centers in amorphous hydrogenated silicon. At the same time, the photoconductivity in these films becomes lower, which may be due to appearance of new centers that are related to nanocrystals and reduce the lifetime of nonequilibrium carriers.
ISSN:1063-7826
1090-6479
DOI:10.1134/S1063782610040159