Points of joint continuity and large oscillations
For topological spaces X and Y and a metric space Z , we introduce a new class of mappings f : X × Y → Z containing all horizontally quasicontinuous mappings continuous with respect to the second variable. It is shown that, for each mapping f from this class and any countable-type set B in Y , the s...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2010-12, Vol.62 (6), p.916-927 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For topological spaces
X
and
Y
and a metric space
Z
, we introduce a new class
of mappings
f
:
X
×
Y
→
Z
containing all horizontally quasicontinuous mappings continuous with respect to the second variable. It is shown that, for each mapping
f
from this class and any countable-type set
B
in
Y
, the set
C
B
(
f
) of all points
x
from
X
such that
f
is jointly continuous at any point of the set {
x
} ×
B
is residual in
X
: We also prove that if
X
is a Baire space,
Y
is a metrizable compact set,
Z
is a metric space, and
, then, for any
ε
> 0, the projection of the set
D
ε
(
f
) of all points
p
∈
X
×
Y
at which the oscillation
ω
f
(
p
) ≥
ε
onto
X
is a closed set nowhere dense in
X
. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-010-0400-0 |