Kinetic parameters of different asphalt binders by thermal analysis

Each year, 100 millions tons of asphalt are manufactured worldwide and 88% of them are designated to act as binder in mineral aggregate producing asphalt mixtures in the paving industry. The present study investigates the kinetics parameters of thermal degradation through thermal analysis behavior o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2011-12, Vol.106 (3), p.679-684
Hauptverfasser: Mothé, Michelle G., Leite, Leni F. M., Mothé, Cheila G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Each year, 100 millions tons of asphalt are manufactured worldwide and 88% of them are designated to act as binder in mineral aggregate producing asphalt mixtures in the paving industry. The present study investigates the kinetics parameters of thermal degradation through thermal analysis behavior of three different asphalt binders’ samples: an asphalt cement C and two asphalt binders modified by polymers: copolymer styrene–butadiene–styrene S and polyphosphoric acid L. By Thermokinetics software a model-free kinetic analysis could be made using two models: Friedman and Ozawa–Flynn–Wall. Kinetic parameters following both models, through Thermogravimetric curves, showed that for the first step, the binder L presented the highest activation energy followed by binder S. Between all simulations, the FnF1 model was the one which best correspond to the experimental data for all samples.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-011-1386-z