Potentialities of silane-modified silicas to regulate palladium nanoparticles sizes

A promising approach to control palladium nanoparticle sizes by application of silane modified silicas was suggested. The combination of reductive properties of silicon hydride groups and hydrophobic properties of alkylsilyl groups which act as agglomeration limiters for metal nanoparticles gives an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2012-06, Vol.108 (3), p.1121-1127
Hauptverfasser: Ivashchenko, N., Tertykh, V., Yanishpolskii, V., Skubiszewska-Zięba, J., Leboda, R., Khainakov, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A promising approach to control palladium nanoparticle sizes by application of silane modified silicas was suggested. The combination of reductive properties of silicon hydride groups and hydrophobic properties of alkylsilyl groups which act as agglomeration limiters for metal nanoparticles gives an opportunity to synthesize uniformly distributed particles with a specified size. Silicas modified with triethoxysilane (TES) and diisopropylchlorosilane (DIPCS), as well as, the combination of hexamethyldisilazane (HMDS) and triethoxysilane were applied for formation of such bifunctional matrices. Properties of the silane-modified silica samples and changes occurred during the formation of palladium nanoparticles were studied by IR spectroscopy. Thermal stability of surface chemical compounds was investigated by thermogravimetric analysis (TGA); low-temperature nitrogen adsorption was used to study structural properties of the applied materials. With the use of transmission electron microscopy (TEM) the dependence of palladium nanoparticle size on the nature of support surface layer was found.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-011-2067-7