Limiting Behavior of Eigenvectors of Large Wigner Matrices

A new form of empirical spectral distribution of a Wigner matrix W n with weights specified by the eigenvectors is defined and it is then shown to converge with probability one to the semicircular law. Moreover, central limit theorem for linear spectral statistics defined by the eigenvectors and eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2012-02, Vol.146 (3), p.519-549
Hauptverfasser: Bai, Z. D., Pan, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new form of empirical spectral distribution of a Wigner matrix W n with weights specified by the eigenvectors is defined and it is then shown to converge with probability one to the semicircular law. Moreover, central limit theorem for linear spectral statistics defined by the eigenvectors and eigenvalues is also established under some moment conditions, which suggests that the eigenvector matrix of W n is close to being Haar distributed.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-011-0407-4