An NMR study of a water-methanol solution sorbed in MF-4SK sulfonated cation-exchange membranes
Concentration dependences of self-diffusion coefficients (SDCs), self-diffusion activation energies for water and methanol, and chemical shifts of the protons of the hydroxyl groups δ OH simultaneously in an external water-methanol solution and the solution sorbed in MF-4SK membranes have been studi...
Gespeichert in:
Veröffentlicht in: | Petroleum chemistry 2013-12, Vol.53 (8), p.590-595 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concentration dependences of self-diffusion coefficients (SDCs), self-diffusion activation energies for water and methanol, and chemical shifts of the protons of the hydroxyl groups δ
OH
simultaneously in an external water-methanol solution and the solution sorbed in MF-4SK membranes have been studied by NMR. It has been revealed that the SDC of pure methanol and pure water sorbed in an MF-4SK membrane is 3–5 times lower than that outside the membrane. It has been found that, in the presence of a small amount of methanol, the SDC of water in the membrane is 1.5–2 times higher than the SDC of pure sorbed water. At a solution concentration of 0.1–0.5 mole fraction, the SDC values of water and methanol in the membrane vary only slightly and are about 6 × 10
−6
and 4 × 10
−6
cm
2
/s, respectively. It has been determined that the δOH value in the membrane is 100–200 Hz higher than that in the external solution. The observed increase in δ
OH
and decrease in SDC in the membrane suggest that the state of the solution in the MF-4SK sulfonated cation-exchange membrane has significantly changed compared to the external solution. The effect of the implanted carbon phase (CP) on the SDC of water and methanol and δOH of the solution sorbed in the MF-4SK membranes containing the CP has been studied. It has been revealed that at a methanol mole fraction of up to 0.5, the introduction of 23 wt % CP decreases the SDC of the solution components by no more than 10–20%. At a methanol mole fraction of 0.25–0.5, the self-diffusion activation energies for methanol and water in the external and membrane solutions decrease by 5–7 kJ/mol. |
---|---|
ISSN: | 0965-5441 1555-6239 |
DOI: | 10.1134/S0965544113080094 |