Improved thermal relaxation method for the simultaneous measurement of the specific heat and thermal conductivity
. A novel method for the simultaneous, high-resolution measurement of the specific heat c and the thermal conductivity κ is presented. A new experimental setup has been developed with special emphasis on the elimination of systematic errors arising from radiative heat loss. A self-consistent data ev...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2010-03, Vol.74 (1), p.27-33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
A novel method for the simultaneous, high-resolution measurement of the specific heat c and the thermal conductivity κ is presented. A new experimental setup has been developed with special emphasis on the elimination of systematic errors arising from radiative heat loss. A self-consistent data evaluation method is implemented which takes the effects of the sample geometry on c and κ properly into account. The measurements were performed over a broad temperature regime from 3 K up to room temperature on three compounds from the family of strongly correlated electron systems. The differences in their thermal properties and their highly sample-dependent sizes and shapes demonstrate the extended scope of the proposed method. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2010-00055-0 |