Scaling relations and critical exponents for two dimensional two parameter maps

. In this paper we calculate the critical scaling exponents describing the variation of both the positive Lyapunov exponent, λ + , and the mean residence time, τ , near the second order phase transition critical point for dynamical systems experiencing crisis-induced intermittency. We study in detai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2010-10, Vol.77 (4), p.469-478
Hauptverfasser: Stynes, D., Hanan, W. G., Pouryahya, S., Heffernan, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. In this paper we calculate the critical scaling exponents describing the variation of both the positive Lyapunov exponent, λ + , and the mean residence time, τ , near the second order phase transition critical point for dynamical systems experiencing crisis-induced intermittency. We study in detail 2-dimensional 2-parameter nonlinear quadratic mappings of the form: X n +1 = f 1 ( X n , Y n ; A , B ) and Y n +1 = f 2 ( X n , Y n ; A , B ) which contain in their parameter space ( A , B ) a region where there is crisis-induced intermittent behaviour. Specifically, the Henon, the Mira 1, and Mira 2 maps are investigated in the vicinity of the crises. We show that near a critical point the following scaling relations hold: τ ~ | A – A c | - γ , ( λ + – λ c + ) ~ | A – A c | β A and ( λ + – λ c + ) ~ | B – B c | β B . The subscript c on a quantity denotes its value at the critical point. All these maps exhibit a chaos to chaos second order phase transition across the critical point. We find these scaling exponents satisfy the scaling relation γ = β B ( – 1), which is analogous to Widom’s scaling law. We find strong agreement between the scaling relationship and numerical results.
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2010-00265-4