Explosive percolation in the human protein homology network
We study the explosive character of the percolation transition in a real-world network. We show that the emergence of a spanning cluster in the Human Protein Homology Network (H-PHN) exhibits similar features to an Achlioptas-type process and is markedly different from regular random percolation. Th...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2010-06, Vol.75 (3), p.305-310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the explosive character of the percolation transition in a real-world network. We show that the emergence of a spanning cluster in the Human Protein Homology Network (H-PHN) exhibits similar features to an Achlioptas-type process and is markedly different from regular random percolation. The underlying mechanism of this transition can be described by slow-growing clusters that remain isolated until the later stages of the process, when the addition of a small number of links leads to the rapid interconnection of these modules into a giant cluster. Our results indicate that the evolutionary-based process that shapes the topology of the H-PHN through duplication-divergence events may occur in sudden steps, similarly to what is seen in first-order phase transitions. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2010-00156-8 |